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SUMMARY 

Flow pyrolysis of the title adduct yields tetrafluoro- 

ethylene and all three tetrafluorobenzenee. 

DISCLJSSION 

Hexafluorobicyolo[2.2.O]hexa-2,5-diene is a reactive 

dipolarophile, forming l:l- and 1:2-adducts with many 

1,3-dipoles [2]. The phenyl azide adduct loses nitrogen on 

heating, forming hexafluoro-l-phenylazepine [3], end this 

prompted a study of the diazomethane adduct as an analogous 

sourue of hexafluorocycloheptatrlene: 
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)- +N, 
0 
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Rapid passage of the vapour of this adduct at ~a. 0.15 mmHg 

through a silica tube heated to 450 'C resulted, unexpectedly, 

in the formation of tetrafluoroethylene (52%), 1,2,3,4-, 
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1,2,3,5-, and 1,2,4,5-tetrafluorobenzenes (95% on the converted 

adduct) in the ratio 8:36:56, and recovered adduct (17%). 

Thermal [I,51 sigma-tropic shifts of hydrogen occur readily 

in cycloheptatriene [4]. For fluorine, both [I,31 and [I,51 

shifts are allowed processes [5]. Cheletropic elimination of 

difluorocarbene from a suitable norcaradiene: 

‘OF2 - ‘D + CF2 (- C2F4) 

would provide a source for the tetrafluoroethylene and the 

tetrafluorobenzenes. The cycloheptatriene-norcaradiene 

equilibrium is well known [6]. 

In the Scheme are represented possible [I,51 sigmatropic 

shifts of hydrogen, and some of the alternative [1,3] or [I,51 

shifts of fluorine. The three possible tetrafluorobenzenes 

obtained are represented by o, m, or p, for the 1,2,3,4-, 

1,2,3,5-, or 1,2,4,5-isomers, respectively. 

The 1,2,3,4-tetrafluorobenzene is a minor product and its 

production requires two hydrogen shifts, which indicates that 

fluorine shifts are faster. It is difficult to distinguish 

between the alternative [I,31 and [I,51 fluorine shifts, since 

both predict 1,2,4,5-tetrafluorobenzene as the preferred isomer, 

its proportion depending upon how sucoessfully cheletropic 

elimination of CF2 competes with the second fluorine shift. 

The 1,2,4,5- and 1,2,3,5-tetrafluorobenzenes are produced 

in the ratio 60:40; there are two explanations for this. If 

the two initial [I,31 fluorine shifts are equally possible, 20% 

of the heptatriene molecules (I) undergo a second [I,31 shift. 

This requires that CF2 elimination be some four times faster 

than fluorine shift. Alternatively, 40% of the molecules undergo 

two [1,5] fluorine shifts, implying that CF2 elimination is only 
slightly faster. 

[1,5] hydrogen shifts have activation energies of 

135 kJ mol-' in 7-methylcycloheptatriene, but this falls to 

108 kJ mol-1 in the 7-methoxy derivative [7], and a relatively 
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low value may well apply here. The cycloheptatriene-norcara- 

diene equilibrium should be fast [a], and [I ,5] alkyl shifts in 

the norcaradiene [9]: 

Fs@F l1,51 _ F5(yHF 

should not be a complication since, in general, alkyl shifts have 

activation energies some 80 kJ mol-' higher than hydrogen shifts 

rIoI * The elimination of the stabilised CF2 carbene [II] has an 

analogy in the allowed elimination of CF2 from hexafluorocyclo- 

propane, where the activation energy is 161 kJ mol-' [12], but 

here the activation energy should be lower since an aromatic 

molecule is produced. However, no clear cut distinction is 

possible at this stage between [I,33 and [1,5] fluorine shifts, 

which must await a study of individual cycloheptatrienes under 

conditions where CF2 elimination is not complete. 

(Polyfluorocyclohepta-1,3-diene)iron tricarbonyls produce 

fluorobenzenes on pyrolysis [IS]: 

(CO&Fe 
X- Y=ForH; 

F2 - C,F,X Y 
X = F, Y I H. 

It was suggested that these arose via difluorocarbene elimina- 

tion from a norcaradiene. Sigmatropic shift of hydrogen, but 

not of fluorine, at the cycloheptatriene stage was considered 

since the lH,4H-compound produced both 1,2,3,5- and 1,2,4,5- 

tetrafluorobenzenes. 

Sigmatropic shifts of fluorine have rarely been reported and 

examples have been confined to five- [14] and six-membered [15] 

rings, where, apparently, [I, 51 are favoured, and the [I, 31 

shifts seen in cyclohexadienea possibly fluoride-ion 

catalysed [16]. They may be rather easier than hitherto 

suspected. 
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Pyrolysis of 1,2,3,4,5,6-Hexafluoro-7,8-diazatricyclo~4.3.0.O2~5~- 

nona-3,7-diene 

The title compound [2] (0.36 g, 1.6 mmol) was sublimed 

in vacua at 60 'C and ca.O.15 mmHg through a silica tube (heated -- 
length 40 cm x 1.2 cm i.d.) at 450 'C, and the products 

(0.258 g) which condensed at -196 'C were fractionated by trap- 

to-trap distillation to give: (i) tetrafluoroethylene (34 mg, 

0.34 mmol, 52% upon the adduct converted), which condensed at 

-196 'c; (ii) a mixture of 1,2,4,5- (0.106 g, 0.70 mmol, 52%), 

1,2,3,5- (68 mg, 0.45 mmol, 34%), and 1,2,3,4-tetrafluorobenzenes 

(15 mg, 0.10 m~$, 7%), which condensed at -78 'C and was 

identified by F n.m.r. spectroscopy; and (iii) starting 

material (60 mg, 0.26 mmol, 17%), which condensed at 0 'C, 

together with a trace of tarry residue (1 mg). 
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